§Submanifold theory
Goal: Generalize the classical theory for surfaces in \mathbb{R}^{3} to submanifolds $\Sigma^{k} \subseteq\left(M^{n}, g\right)$

Def": An isometric immersion $F:\left(\Sigma^{k}, h\right) \rightarrow\left(M^{n}, g\right)$ is an immersion (as manifolds) set $F^{*} g=h$

As far as local aspects are concemed, we can regard $\Sigma^{k} \subseteq\left(M^{n} . g\right)$ and $\left.g\right|_{\Sigma}$ induced metric as a k-dime embedded suburfa

Note: $\left(\Sigma^{k},\left.g\right|_{\Sigma}\right)$ Rem mfd $\overbrace{\text { of R.G. }}^{\text {Fund Thu }} \exists$! Rem connection ∇^{Σ}
Q: How are the comections $\boldsymbol{\nabla}^{M}$ and $\boldsymbol{\nabla}^{\boldsymbol{\Sigma}}$ related?

Recall: \exists "canonical orthogonal spitting: at each $\rho \in \Sigma$

$$
\begin{aligned}
& T_{p} M=T_{p} \sum \oplus \underbrace{\omega}_{\nu} T_{p} \Sigma)^{\perp} \\
& \dot{v}=v^{\sim}+\text { normal bundle } N_{p} \Sigma \\
& v^{\top}
\end{aligned}
$$

Thu: Let $X, Y \in T(T \Sigma)$. Then
 $\nabla_{X}^{\Sigma} Y=\left(\nabla_{\bar{X}}^{M} \bar{Y}\right)^{\top}$ where $\bar{X}, \bar{Y} \in T(T M)$ are extensions" of X, Y st. $\left.\bar{X}\right|_{\Sigma}=X,\left.\bar{Y}\right|_{\Sigma}=Y$

Recall: Isometric immersion $F:\left(M^{k}, g\right) \rightarrow\left(\bar{M}^{n}, \bar{g}\right)$ st $F^{*} \bar{g}=g$ ie $\bar{g}_{\left.F_{p}\right)}\left(d F_{p}(v), d F_{p}(w)\right)=g_{p}(v, w)$
Locally, immersions are embedding. $M^{k} \approx F(M) \subseteq \bar{M}^{n}$.
Setup: $M^{k} \leq\left(\bar{M}^{n}, \bar{g}\right)$ submanifold $(k \leq n)$

$\left(\bar{M}^{n} \cdot \bar{g}\right)$
Question: How do study the
"intrinsic" \& "extrinsic" geometry of M ?

Crucial observation: At $P \in M$, there is an orthogonal splitting $T_{p} \bar{M}=T_{p} M \underset{\perp}{\oplus}\left(T_{p} M\right)^{\perp}$ (w.r.t. \bar{g})

Notation: $N M:=\frac{11}{p \in M}\left(T_{p} M\right)^{\perp} \quad$ normal bundle
orthogonal decomposition

$$
\begin{array}{cc}
V=V^{\top}+V^{N} & \forall p \in M \\
T_{p} M & T_{p} M \\
T_{p} M &
\end{array}
$$

Note: $\overline{9}$ restricts to an inner product on each $T_{p} M \&\left(T_{p} \bar{M}, \bar{g}\right)$ write $g:=\left.\bar{g}\right|_{T M}$ ans $\left(M^{k}, g\right)$ Riem. manifold By Fund. Tum of R.G., ヨ! Rem. connection ∇ for $\left(M^{k}, g\right)$.

Q: How is $\boldsymbol{\nabla}$ related to the ambient Rim. connection $\overline{\boldsymbol{\nabla}}$ on (\bar{M}, \bar{g}) ?

Recall: $\boldsymbol{\nabla}: P(T M) \times T(T M) \rightarrow T(T M)$
$\bar{\nabla}: T(T \bar{M}) \times T(T \bar{M}) \rightarrow \mathcal{T}(T \bar{M})$

Prop: Let $X, Y \in T(T M)$, and $\bar{X}, \bar{Y} \in T(\bar{M})$ be extensions of X, Y.
THEN:

$$
\bar{\nabla}_{X} Y=\left(\bar{\nabla}_{\bar{x}} \bar{Y}\right)^{\top}
$$

Remarks: $\overline{\bar{V}}_{\bar{X}} \bar{Y}(p)$ depends only on $\bar{X}(p)=X(p)$
and \bar{Y} along any curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow \bar{M}$ sit $\gamma(0)=p, \gamma^{\prime}(0)=x(p)$
[we can make $\gamma \subseteq M$, where $\bar{Y}=Y$ on M]
\Rightarrow R.H.S. is index. of the choice of extensions \bar{x}, \bar{y}.
Proof: Check R.H.S. defines a connection which is metric compatible and torsion $n^{- \text {free }}$, then result follows by uniqueness part of Fund Tum of R.G.
(i) $(X, Y) \mapsto\left(\bar{\nabla}_{X} Y\right)^{\top}$ bilinear
(ii) $\left(\bar{\nabla}_{f_{X}} Y\right)^{\top}=\left(f \bar{\nabla}_{X} Y\right)^{\top}=f\left(\bar{\nabla}_{X} Y\right)^{\top}$
(iii) $\left(\bar{\nabla}_{x}(f Y)\right)^{\top}=\left(X(f) Y+f \bar{\nabla}_{x} Y\right)^{\top}=X(f) Y+f\left(\bar{\nabla}_{x} Y\right)^{\top}$
(iv)

$$
\begin{aligned}
& Z(g(X, Y))=\bar{Z}(\bar{g}(\bar{X}, \bar{y}))=\bar{g}\left(\bar{\nabla}_{\bar{z}} \bar{X}, Y\right)+\bar{g}\left(X, \bar{\nabla}_{\bar{z}} \bar{Y}\right) \\
& =g\left(\left(\overline{\nabla_{\bar{z}}} \bar{X}\right)^{\top}, Y\right)+g\left(X,\left(\bar{\nabla}_{\bar{z}} \bar{Y}\right)^{\top}\right)
\end{aligned}
$$

(v)

$$
\begin{aligned}
\left(\bar{\nabla}_{\bar{X}} \bar{Y}^{\prime}\right)^{\boldsymbol{\top}}- & \left(\overline{\bar{\nabla}}_{\bar{Y}} \bar{X}^{\boldsymbol{\top}}=\left(\bar{\nabla}_{\bar{X}} \bar{Y}-\bar{\nabla}_{\bar{Y}} \bar{X}\right)^{\boldsymbol{\top}}=([\bar{X}, \bar{Y}])^{\boldsymbol{\top}}\right\} \\
& =([X, Y])^{\boldsymbol{\top}}=[X, Y]
\end{aligned}
$$

Q: What about the "normal" part of $\overline{\boldsymbol{\nabla}}$?
Def": $2^{\text {nd }}$ fundamental form of M in \bar{M}

$$
\begin{aligned}
& A: T(T M) \times P(T M) \longrightarrow T(N M) \\
& A(X, Y):=\left(\bar{\nabla}_{\bar{X}} \bar{Y}\right)^{N}
\end{aligned}
$$

Remarks: This is well-defined indep. of the extensions \bar{X}, \bar{Y}.

Lemma: (i) $A(x, y)=A(y, x)$

$$
\begin{aligned}
& \forall x, Y \in P(T M) \\
& \forall f \in C^{\circ}(M)
\end{aligned}
$$

(ii) $A(f X, Y)=A(X, f Y)=f A(X, Y)$
ie. A is a symmetric $N M$-valued (0.2)-tenser.
Proof: (i) $A(X, Y)-A(Y, X)=\left(\bar{\nabla}_{\bar{X}} \bar{Y}\right)^{N}-\left(\bar{\nabla}_{\bar{Y}} \bar{X}\right)^{N}$

$$
=\left(\bar{\nabla}_{\bar{x}} \bar{y}-\bar{\nabla}_{\bar{y}} \bar{x}\right)^{N}=([\bar{x}, \bar{y}])^{N}=([x, y])^{N}=0
$$

(Because $[X, Y] \in T(T M) \quad \forall X, Y \in T(T M)$).
(ii) $A(f X, Y)=\left(\bar{\nabla}_{\bar{f} \bar{X}} \bar{Y}\right)^{N}=\left(\bar{f} \bar{\nabla}_{\bar{X}} \bar{Y}\right)^{N}=f\left(\bar{\nabla}_{\bar{X}} \bar{Y}\right)^{N}=f A(X, Y)$.

Fix $\eta \in T(N M)$, then we can define a scalar-valued $2^{\text {nd }}$ ff. (writ η)

$$
\begin{array}{r}
A_{\eta}: T(T M) \times T(T M) \rightarrow C^{\infty}(M) \\
A_{\eta}(X, Y)=\langle A(x, Y), \eta\rangle
\end{array}
$$

This is a symmetric bilinear form on each TPM.

$$
\mathrm{migher}_{\text {algetre }}^{\text {linear }} A_{\eta}(X, Y)=\left\langle S_{\eta}(X), Y\right\rangle \quad \text { shape operator } 1
$$

where $S_{y}: T_{p} M \rightarrow T_{p} M$ is self-odjoint operator.

Prop: $\quad S_{\eta}(x)=-\left(\bar{\nabla}_{x} \eta\right)^{\top}$

Proof: $\left\langle S_{\eta}(X), Y\right\rangle=A_{\eta}(X, Y)=\langle A(X, Y), \eta\rangle$

$$
\begin{align*}
& =\left\langle\left(\bar{\nabla}_{\bar{x}} \bar{Y}\right)^{N}, \eta\right\rangle=\left\langle\bar{\nabla}_{\bar{x}} \bar{Y}, \eta\right\rangle \\
& =x\langle\underbrace{Y, \eta\rangle}_{\equiv 0}-\left\langle Y, \bar{\nabla}_{x} \eta\right\rangle=\left\langle Y_{,}-\left(\bar{\nabla}_{X} \eta\right)^{\top}\right\rangle
\end{align*}
$$

Question:
$\left(\bar{M}^{n}, \bar{g}\right)$ mas connection $\bar{\nabla}$ ans Curacture \bar{R} Ul related \uparrow relation?
(M^{k}, g) mas connection ∇ ma curvature R
Answer: \bar{R} and R are related via the $2^{\text {not }}$ ff. $A\left(\right.$ or S_{η}) They will be expressed in terms of 3 sets of "constraint equations" called Gauss. Codazzi. Riccio equations.

Before we state the se equations, we need some preliminary notions:
(i) Connection \& curvature on normal bundle NM
\exists connection ∇^{\perp} on NM defined as:

$$
\begin{aligned}
& \nabla^{\perp}: T(T M) \times T(N M) \rightarrow T(N M) \\
& \nabla_{x}^{1} \eta:=\left(\bar{\nabla}_{x} \eta\right)^{N} \\
& \binom{\text { Ext }^{x}: \text { This is a }}{\text { "womection" }}
\end{aligned}
$$

an g normal

$$
R^{\perp}(x, y) \eta:=\nabla_{Y}^{1} \nabla_{x}^{1} \eta \cdot \nabla_{x}^{1} \nabla_{Y}^{1} \eta+\nabla_{[x, y]}^{1} \eta
$$

(ii) Covariant derivative of $2^{\text {no l }} f f$. A

Fix $\eta \in P(N M)$, then

$$
A_{\eta}(x, y)=\langle A(x, y), \eta\rangle=: A(x, y, \eta)
$$

$\leadsto \quad$ regard $A: P(T M) \times T(T M) \times T(N M) \longrightarrow C^{\infty}(M)$
Define: $\forall x, Y, Z \in T(T M), \forall \eta \in T(N M)$.

$$
\begin{aligned}
\left(\nabla_{Z} A\right)(x, y, \eta):= & Z(A(x, Y, \eta))-A\left(\nabla_{Z} x, Y, \eta\right) \\
& -A\left(x, \nabla_{Z} Y, \eta\right)-A\left(x, y, \nabla_{Z}^{\eta} \eta\right)
\end{aligned}
$$

Thu: ("Constraint Equations" for isometric immersions)
The following equations hold for $M \subseteq(\bar{M}, \bar{S})$: $\forall X, Y, Z, W \in T(T M), \forall \eta, \zeta \in T(N M)$. we have

Gauss: $\bar{R}(x, y, z, w)=R(x, y, z, w)-\langle A(y, w), A(x, z)\rangle$

$$
T T \quad+\langle A(x, w), A(y, z)\rangle
$$

Codazzi: $\bar{R}(X, Y, \underset{T}{Z} \cdot \underset{N}{\eta})=(\underset{Y}{ } A)(x, Z, \eta)-\left(\nabla_{x} A\right)(Y, Z, \eta)$

Idea of Proof: \exists orthogonal splitting $T \bar{M}=T M \oplus N M$

Proof: Recall: $\bar{\nabla}_{X} Y=\nabla_{X} Y+A(X, Y)$

$$
\begin{aligned}
& \bar{R}(x, y) Z:=\bar{\nabla}_{y} \bar{\nabla}_{x} z-\bar{\nabla}_{X} \bar{\nabla}_{y} Z+\bar{\nabla}_{[x, y]} Z \\
& =\bar{\nabla}_{y}\left(\nabla_{x} z+A(x, z)\right)-\bar{\nabla}_{x}\left(\nabla_{y} z+A(y, z)\right) \\
& +\nabla_{[x, y]} Z+A([x, y], Z) \\
& =\nabla_{Y} \nabla_{X} z+A\left(Y, \nabla_{X} z\right)+\bar{\nabla}_{Y}(A(x, z)) \\
& -\nabla_{X} \nabla_{y} z-A\left(x, \nabla_{y} z\right)-\bar{\nabla}_{x}(A(y, z)) \\
& +\nabla_{[x, y]} Z+A([x, y], Z) \\
& =R(X, y) Z+A\left(y, \nabla_{x} Z\right)-A\left(X, \nabla_{r} Z\right)+A([x, y], Z) \\
& +\bar{\nabla}_{Y}(A(X, z))-\bar{\nabla}_{X}(A(Y, z)) \text {. }
\end{aligned}
$$

Taking inner product with a tangential $W \in T(T M)$.

$$
\begin{aligned}
& \bar{R}(x, Y, Z, w)=R(X, Y, Z, w)+\left\langle\bar{\nabla}_{Y}(A(x, z)), w\right\rangle-\left\langle\bar{\nabla}_{X}(A(y, z)), w\right\rangle \\
&=R(X, Y, Z, w)-\left\langle A(x, Z), \bar{\nabla}_{y} w\right\rangle+\left\langle A(Y, Z), \bar{\nabla}_{X} w\right\rangle \\
& \text { Gauss! }=R(X, Y, Z, w)-\left\langle A(x, Z),\left(\bar{\nabla}_{y} w\right)^{N}\right\rangle+\left\langle A(Y, Z),\left(\bar{\nabla}_{X} w\right)^{N}\right\rangle \\
&=R(X, Y, Z, w)-\langle A(x, Z), A(Y, w)\rangle+\langle A(Y, Z), A(x, w)\rangle
\end{aligned}
$$

Taking inner product worth a normal $\eta \in T(N M)$.

$$
\begin{aligned}
\bar{R}(x, y, z, \eta)= & A\left(y, \nabla_{x} z, \eta\right)-A\left(x, \nabla_{y} z, \eta\right)+A([x, y], z, \eta) \\
& +\left\langle\bar{\nabla}_{y}(A(x, z)), \eta\right\rangle-\left\langle\bar{\nabla}_{x}(A(y, z)), \eta\right\rangle
\end{aligned}
$$

Note: $\left\langle\bar{\nabla}_{Y}(A(x, z)) \cdot \eta\right\rangle$

$$
\begin{aligned}
& =Y(A(x, z, \eta))-\left\langle A(x, z),\left(\bar{\nabla}_{Y} \eta\right)^{N}\right\rangle \\
& =Y(A(x, z, \eta))-\left\langle A(x, z), \nabla_{Y}^{2} \eta\right\rangle \\
& \bar{R}(x, y, z, \eta)=A\left(y, \nabla_{x} z, \eta\right)-A\left(x, \nabla_{y} z, \eta\right)+A\left(\underline{\nabla_{x}} \bar{x}-\nabla_{\underline{x}}, z, \eta\right) \\
& +Y(A(x, z, \eta))-A\left(x, z, \nabla_{Y}^{1} \eta\right) \\
& -X(A(Y, Z, \eta))+A\left(Y, Z, \nabla_{X}^{1} \eta\right) \\
& =\left(\underline{\nabla_{Y}} A\right)(x, z, \eta)-\left(\nabla_{X} A\right)(Y, Z, \eta)
\end{aligned}
$$

Recall: $\quad \bar{\nabla}_{x} \eta=-S_{\eta}(x)+\nabla_{x}^{1} \eta$

$$
\begin{aligned}
\bar{R}(x, y) \eta= & \bar{\nabla}_{Y} \bar{\nabla}_{x} \eta-\bar{\nabla}_{x} \bar{\nabla}_{Y} \eta+\bar{\nabla}_{[x, y]} \eta \\
= & \bar{\nabla}_{Y}\left(-S_{\eta}(x)+\nabla_{X}^{1} \eta\right)-\bar{\nabla}_{x}\left(-S_{\eta}(y)+\nabla_{Y}^{1} \eta\right) \\
& -S_{\eta}([x, y])+\nabla_{[x, y]}^{1} \eta
\end{aligned}
$$

$=$ "Tangential terms"

$$
\begin{aligned}
& -\left[\bar{\nabla}_{y}\left(S_{\eta}(x)\right)\right]^{N}+\left[\bar{\nabla}_{x}\left(S_{\eta}(y)\right)\right]^{N} \\
& +\nabla_{y}^{1} \nabla_{x}^{1} \eta-\nabla_{x}^{1} \nabla_{r}^{1} \eta+\nabla_{[x, y]}^{1} \eta
\end{aligned}
$$

Taking inner product moth a normal $\zeta \in T(N M)$.

$$
\begin{aligned}
\bar{R}(x, y, \eta, \zeta) & =\left\langle R^{\perp}(x, y) \eta, \zeta\right\rangle \\
& -\left\langle\left[\bar{\nabla}_{Y}\left(S_{\eta}(x)\right)\right]^{N}, \zeta\right\rangle+\left\langle\left[\bar{\nabla}_{x}\left(S_{\eta}(y)\right)\right]^{N}, \zeta\right\rangle
\end{aligned}
$$

Note: $\left\langle\left[\bar{\nabla}_{Y}\left(S_{\eta}(x)\right)\right]^{N}, \zeta\right\rangle=\left\langle\bar{\nabla}_{Y}\left(S_{\eta}(x)\right), \zeta\right\rangle$

$$
\begin{aligned}
& =Y(\underbrace{\left\langle S_{\eta}(x) \cdot \zeta\right\rangle}_{\equiv 0})-\left\langle S_{\eta}(x) \cdot\left(\bar{\nabla}_{Y} \zeta\right)^{\top}\right\rangle \\
& =\left\langle S_{\eta}(x) \cdot S_{\zeta}(y)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\bar{R}(x, y, \eta, \xi)= & \left\langle R^{1}(x, y) \eta, \zeta\right\rangle+\left\langle S_{\eta}(x), S_{\xi}(y)\right\rangle \\
& -\left\langle S_{\eta}(y), S_{\xi}(x)\right\rangle \\
\text { Ricci! } & =\left\langle R^{1}(x, y) \eta, \zeta\right\rangle+\left\langle\left(S_{\xi} \cdot S_{\eta}-S_{\xi} \cdot S_{\eta}\right)(x), Y\right\rangle
\end{aligned}
$$

Several Remarks
(1) In codimension 1 (ie. hypersurface), the Riccio equation is trivial.

Reason: whim $1 \Leftrightarrow N M$ is 1-dim'l $\quad \zeta=f \eta$
Rice: : $\underbrace{\bar{R}(x, y, \eta, \eta)}_{=0}=\underbrace{\left\langle R^{1}(x, y) \eta, \eta\right\rangle}_{=0}+\langle\underbrace{\left[S_{\eta}, S_{\eta}\right]}_{=0}(x), Y\rangle$
(2) The unit sphere $\mathbb{S}^{n} \subseteq\left(\mathbb{R}^{n+1} \cdot \bar{g}_{\text {Encl }}\right)$ has $K \equiv 1$.

Pf: n outward unit
Pf: $\quad{ }^{\text {noma }} \mathbb{S}^{n} \subseteq \mathbb{R}^{n+1} \quad \eta=\overrightarrow{\mathbf{x}} \quad$ position vector

$$
\Rightarrow \bar{\nabla}_{x} \eta=\bar{\nabla}_{x} \vec{x}=x \Rightarrow S_{\eta}(x)=-x
$$

ie. $A_{\eta}(X, Y)=\left\langle S_{\eta}(X), Y\right\rangle=-\langle X, Y\rangle$

Gauss: $\bar{R}(x, y, z, w)=R(x, y, z, w)-\langle A(y, w), A(x, z)\rangle$

$$
\begin{aligned}
& \quad \begin{array}{l}
\equiv 0 \\
\because \mathbb{R}^{n+1} \text { is flat } \\
\mathbb{S}^{n} \\
\\
\left.R^{x}, Y, z, w\right)
\end{array} \quad+\langle A(x, w), A(y, z)\rangle
\end{aligned}
$$ ie $K^{\mathbb{S}^{n}} \equiv 1$. -

(iii) If $M^{n-1} C\left(\bar{M}^{n}, \bar{g}\right)$ codim 1 and (\bar{M}, \bar{S}) has constant sectional curvature, then for $\eta=$ unit normal (locally)
Codazzi eq ${ }^{2} \Leftrightarrow \nabla_{x}\left(S_{\eta}(y)\right)-\nabla_{Y}\left(S_{\eta}(x)\right)=S_{\eta}([x, y])$
(Ex: Prove this.)

Summary: Submanifold $M^{k} \subseteq\left(\bar{M}^{n} \cdot \bar{g}\right),\left.\bar{g}\right|_{M}=: g$
m Study $\left(M^{k}, g\right)$ from two perspectives: intrinsic $O R$ extrinsic Roughly speaking: $T_{p} \bar{M}=T_{p} M \oplus\left(T_{p} M\right)^{\perp}$

$$
\text { rffentt } 9 \text { trice" } 3 \text { "constraint eq:" }
$$

Note: $\langle A(X, Y), \eta\rangle=\left\langle S_{\eta}(x), Y\right\rangle$

$$
\begin{aligned}
& { }_{\text {differemtitit }} g^{\prime \prime} \quad \bar{\nabla}=\bar{\nabla}^{\top}+\bar{\nabla}^{N} \\
& \text { "diffentt } 9 \text { trice" } \\
& 2^{\text {Dod }} \text { ff. } A(X, Y)=\left(\bar{\nabla}_{X} Y\right)^{N} \\
& \underset{\eta \in T(N M)}{\text { Equivalently }} \cdot S_{\eta}(x):=-\left(\bar{\nabla}_{X} \eta\right)^{\top} \\
& \eta \in T \text { (NM) }
\end{aligned}
$$

Gauss:

$$
\begin{gathered}
\bar{R}(x, y, z, w)=R(x, y, Z, w)-\langle A(y, w), A(x, Z)\rangle \\
+\langle A(x, w), A(Y, z)\rangle
\end{gathered}
$$

Codazzi: $\bar{R}(x, y, z, \eta)=\left(\nabla_{y} A\right)(x, z, \eta)-\left(\nabla_{x} A\right)(y, z, \eta)$
Ricci: $\bar{R}(x, y, \eta, \zeta)=\left\langle R^{\perp}(x, y) \eta, \zeta\right\rangle+\left\langle\left[S_{\eta}, S_{\zeta}\right](x), y\right\rangle$
Consider the special case of $M^{2} \subset\left(\mathbb{R}^{3}, g_{E_{\text {un. }}}\right)$
Fix $p \in M, \sigma=T_{p} M \subseteq T_{p} \mathbb{R}^{3} \quad \sigma={\operatorname{span}\left\{e_{1}, e_{2}\right\} \quad \text { O.N.B. }}$

$$
\begin{gathered}
\bar{R}\left(e_{1}, e_{2}, e_{1}, e_{2}\right)=R\left(e_{1}, e_{2}, e_{1}, e_{2}\right)-\left\langle A\left(e_{2}, e_{2}\right), A\left(e_{1}, e_{1}\right)\right\rangle \\
\left(\because \mathbb{R}^{3} \text { is flat }\right)+\left\langle A\left(e_{1}, e_{2}\right) . A\left(e_{2}, e_{1}\right)\right\rangle
\end{gathered}
$$

$\Rightarrow \quad 0=R_{1212}-A_{22} A_{11}+A_{12}^{2} \quad$ Gauss' Golden Theorem!
ie $\quad R_{1212}=A_{11} A_{22}-A_{12}^{2}=\operatorname{det}\binom{A_{11} A_{12}}{A_{42} A_{22}}=: K \quad \begin{gathered}\text { Gauss } \\ \text { curvature }\end{gathered}$
Def: $M^{k} \leq\left(\bar{M}^{n}, \bar{g}\right)$ is totally geodesic if $A \equiv 0$ at every $p \in M$

Es.)

$\left(\mathbb{S}^{n}, g_{\text {round }}\right)$

Prop: $M^{h} \subseteq\left(\bar{M}^{n}, \bar{j}\right)$ totally $\begin{gathered}\text { geodesic }\end{gathered} \Leftrightarrow$ every geodesics in M geodesic are geodesics in \bar{M}.

Pf: For any smooth are $\gamma: I \rightarrow M$.

$$
\begin{array}{r}
\bar{\nabla}_{\gamma^{\prime}} \gamma^{\prime}=\left(\bar{\nabla}_{\gamma^{\prime}} \cdot \gamma^{\prime}\right)^{\top}+\left(\bar{\nabla}_{\gamma^{\prime}} \cdot \gamma^{\prime}\right)^{N} \\
=\nabla_{\gamma^{\prime}} \gamma^{\prime}+\underbrace{A\left(\gamma^{\prime}, \gamma^{\prime}\right)}_{\begin{array}{c}
\equiv 0 \\
\because \text { totally } \\
\text { geode sic }
\end{array}}
\end{array}
$$

Note: Geodesics in \bar{M} lying in ard M are always geodesic in M

This gives a geometric interpretation of "Sectional curvature" in temps of "Gauss cincture" for surfaces.
Recall: In geodesic normal coord. centered at $p \in\left(\bar{M}^{n} \cdot \bar{S}\right)$.

By Gaurs eq: at $p \in M^{2} \subseteq\left(\bar{M}^{n} \cdot \overline{\bar{J}}\right)$.
 at P

$$
\underbrace{\bar{R}\left(e_{1}, e_{2}, e_{1}, e_{2}\right)}_{\bar{K}_{p}(\sigma)}=\underbrace{R\left(e_{1}, e_{2}, e_{1}, e_{2}\right)}_{\substack{\text { II Gauss } \\ K_{M}(p)}}+(\overbrace{\text { quadiedese }})
$$

Remark: Totally geodesic submanifolds rarely exists in general ($\bar{M}^{n} . \bar{\xi}$). We want to define a "weaker" notion.

Def n: $M^{k} \subseteq\left(\bar{M}^{n}, \bar{s}\right)$ as The mean urreture rector at $p \in M$

$$
\vec{H}(p):=\sum_{i=1}^{k} A_{p}\left(e_{i}, e_{i}\right) \text { where }\left\{e_{\left.0, \ldots, e_{k}\right\} \text { O.N.R for } T_{p} M}\right.
$$

And we say M is minimal if $\vec{H} \equiv \overrightarrow{0}$ at every $p \in M$
Remarks: 1) totally geodesic $\underset{\langle\mathcal{*}}{\underset{ }{\rightleftarrows}}$ minimal
Egg.) $\quad \mathbb{S}^{n-1} \subseteq \mathbb{R}^{n}$
2) In codim. 1 case, we wrote

$$
\vec{H}={\underset{\gamma}{r}}_{H}^{H} \stackrel{\rightharpoonup}{\nu i t} \text { normal }
$$

(Scaler) $\begin{aligned} & \text { mean aureture (Sign depends on }\end{aligned}$ choice of \vec{v})

3）When $k=\operatorname{dim} M=1$ ．then＂minimal＂\Leftrightarrow＂geodesic＂ In fact，minimal k－submanifolds are critical points to the k－dinil area functional．just like＂geodesics＂are critical points to the length functional．

E．g．）Minimal surfaces in R^{3}

plane
totally
geode Sic

Catenoid

helicoid
oily many more －ゃひー • •

Minimal surfaces in $\left(S^{3}\right.$ ．ground ）

great sphere
totally geodesic

Clifford toms
（ HW ）

